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The Laplace-Young equation is solved for axisymmetric menisci, analytically 
in terms of elliptic integrals for all possible types of pendular rings and liquid 
bridges when the effect of gravity is negligible, numerically for selected other 
cases in order to assess gravity’s effect. Meniscus shapes, mean curvatures, 
areas and enclosed volumes are reported, as are capillary forces. It is shown 
that capillary attraction may become capillary repulsion when wetting is imper- 
fect. The special configurations of vanishing capillary force and of zero mean 
curvature are treated. The range of utility of the convenient ‘circle approxima- 
tion’ is evaluated. 

1. Introduction 
A small amount of liquid held at  a point of contact between two solid surfaces 

is often called a pendular ring if its meniscus is axially symmetric or nearly so, 
If the surfaces are slightly apart the liquid may form an axially symmetric 
liquid bridge between them. These ring and bridge configurations occur in a broad 
range of circumstances and consequently investigators from widely separated 
fields have attacked various aspects of the problem of describing them. Of 
importance in applications are the volume of liquid, surface area and mean 
curvature of the meniscus, and forces exerted on the solid surfaces. For instance, 
volume is central to calculations of water saturations in soils (Haines 1925; 
Fisher 1926), assessment of connate water content of oil and gas reservoirs 
(Morrow 1971)) and interpretation of mercury porosimetry data (Mayer & Stowe 
1966). Curvature is crucial in calculations of capillary condensation and evapora- 
tion in all sorts of porous media (Defay & Prigogine 1966; Everett 1967; Melrose 
1972). Forces are important in the dispersion of pigments and wetting of powders 
(Carman 1953)) flocculation of three-phase slurries (Woodrow, Chilton & Hawes 
1961)) deformation of moist soils and other unconsolidated porous media (Haines 
1925, 1927; Fisher 1926)) liquid-phase sintering of finely divided metals or 
polymers (Kingery 1959; Heady & Cahn 1970), formation of latex films (Sheetz 
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1965; Vanderhoff et al. 1966; Mason 1973), and adhesion of dust and powder to 
surfaces (Zimon 1960). 

When the amount of trapped liquid is small enough that the influence of 
gravity is negligible, the meniscus everywhere has the same mean curvature, 
To find surfaces of uniform, non-vanishing mean curvature which have prescribed 
area and enclose a maximum or minimum volume is a classic problem in the 
calculus of variations and the axisymmetric case was considered by Howe (1887). 
Using a method similar to Howe’s, in which interpolation among solutions is 
required in order to satisfy boundary conditions, Fisher (1926) calculated the 
volumes of and forces exerted by pendular rings between identical spheres which 
are completely wetted by the trapped liquid; in this case the meniscus is a seg- 
ment of nodoid. Woodrow et al. (1961) calculated meniscus profiles and adhesive 
forces by solving the Laplace-Young differential equation (which is the Euler 
equation of the equivalent variational problem) as an initial-value problem with 
the radius of the meniscus given on the plane of symmetry between identical 
spheres; interpolation among the profiles selects the one which makes the pre- 
scribed contact angle with spheres of given size. The corresponding boundary- 
value problem was solved by Melrose (1966), who obtained volumes, areas and 
curvatures but limited himself to menisci with negative mean curvatures (a 
curvature is considered positive when its centre of curvature lies on the axis- 
side of the meniscus) and consequently missed some interesting features of the 
solution set. Erle, Dyson & Morrow (1971) studied the stability of liquid bridges 
and also obtained some but not all members of the solution set. For the problem 
of a meniscus between spheres of unequal radius only an approximate solution 
has been attempted (Rose 1958). None of these investigations has dealt with the 
effect of a different contact angle a t  each sphere. 

In fact there has been no comprehensive analysis of pendular rings and liquid 
bridges, even of those between identical spheres. In  this paper we treat the 
more general case of a sphere in contact with a flat plate, the meniscus making 
different contact angles a t  the sphere and the plate. This subsumes rings and 
bridges between unequal spheres as well as between equal spheres with different 
contact angles, inasmuch as solutions to these problems can be constructed from 
solutions of the sphere-on-plate problem which intersect the plane of the plate 
in a common circle and make supplementary contact angles with that plane. 
The system to be treated is shown in figure 1.  Approximate solutions were 
attempted for the sphere-on-plate problems by Cross & Picknett (1963b) and 
Clark, Haynes & Mason (1968). 

In the next section the Laplace-Young equation is solved in terms of elliptic 
integrals for all possible types of pendular rings between sphere and plate 
when the effect of gravity is negligible. Computations based on these results 
are reported in $3, which contains new information about rings having zero 
mean curvature (an instance of ‘Plateau’s problem’) and about rings which 
produce zero net force on the sphere. The occurrence of capillary repulsion is 
analysed. Finally a commonly used ‘circle approximation’ is extended to the 
more general sphere-on-plate problem and its range of validity is considered. 
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FIGURE 1. Pendular ring or liquid bridge between a sphere and a plane. 

2. Analysis 
The configuration of a liquid/vapour interface at  rest is described by the equa- 

tion of Young and Laplace (Pujado, Huh & Scriven 1972), which relates the dif- 
ference in hydrostatic pressure across the interface to the local mean curvature 
H and surface tension CT of the interface. When the Bond number (gL2Ap/a, 
where g is the local acceleration due to gravity, Ap the density difference between 
the fluids on either side of the interface, and L some characteristic length for 
the system) is sufficiently smaIl, the effect of gravity is negligibIe and the mean 
curvature is nearly uniform. If the meniscus is axisymmetric its mean curvature 
then satisfies the following version of the Laplace-Young equation: 

d2z/dr2 dxldr 
2H = + 

[I + ( d ~ / d r ) ~ ] %  r[i + ( d z / ~ i r ) ~ ] + ’  
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r and z are cylindrical co-ordinates of the meniscus (figure 1). With dimensionless 
variables y = z/R and x = r / R  and the parameter u = -sine (Melrose 1966), 
where 6 is the angle made by the normal to the meniscus with the vertical axis, 
(1) reduces to 

This equation must be solved as a two-point boundary-value problem for which 
the boundary conditions are the inclinations of the meniscus a t  the contact 
circles where it terminates on solid surfaces. These inclinations are determined by 
the slopes of the solid surfaces and the respective contact angles 8, and 8, which 
the meniscus makes with them. Thus the boundary conditions are 

2HR = - du/dx - U / X .  (2) 

(3) I u2 = -sin (n - 02), y2 = 0, 

u1 = -sin(&+$), y1 = d+l-cos$, x1 = sin$, 

where $ is the filling angle and d = D/R is the separation between sphere and 
plate (see figure 1). 

The boundary-value problem has the solution 

x = - (1/2H) [U T (u2 + c)&],  (4) 

where the curvature-dependent parameter c is 

c 3 4H2R2 sin2 $ - 4HR sin $sin (6, + $). 

The mean curvature can be obtained from (5): 

An iterative solution is required since c depends on H .  
The choice between ambiguous signs in (4)-(6) is dictated by the sign of the 

meridional curvature of the meniscus. I n  ( 2 )  the meridional curvature is - du/dx 
and the azimuthal curvature - u/x .  Therefore the meridional curvature can be 
expressed as 

We consider first a meniscus with negative meridional curvature, 

-du/dx < 0, (8 )  

for which the mean curvature H is either positive or not. We note that x ,  the 
dimensionless radius, is necessarily positive, and so from ( 4 )  we require that 

and hence the plus sign must be chosen if (9) is to be satisfied when H < 0. 
Similarly, where H > 0 and c 0, the minus sign must be used. 
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When 0 < H < sin (8, ++)/sin $, then c < 0. Now let 

sin E 

- sin E T (sin2 E + c)+ 
r K  
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If the minus sign is chosen in the definition of K ,  it follows that - 1 < K < - 4 
and if the plus sign is chosen, K < - 1.  Consequently (7) becomes 

-du /dx  = 2 H ( K  + 1) 

and the plus sign in ( 7 )  must be used if the meridional curvature is negative. 
Similarly, the minus sign must be used when the meridional curvature is positive. 
Hence the appropriate sign in (4)-(6) is the opposite of the sign of the meridional 
curvature. 

In  some instances the meridional curvature changes sign a t  an intermediate 
point, an inflexion point, in the meridional profile. At such a point the meridional 
curvature - d u / d x  is zero and ( 2 )  becomes 

U ZL 
2H = -- = 

5 (ZH)-l[uT (2b"c)q 

or U T  ( u ~ + c ) +  = U ;  i.e. a t  an inflexion point 

U 2 + C  = 0. (10) 

Hence c must be negative, which requires that 

0 < H R  < sin(O,++)/sin$. (11) 

I n  terms of the parameter E ,  which is the angle between the normal to the 
meniscus and the vertical axis, the inflexion point occurs at 

E* = arc sin ( - c)*. 

If an inflexion point does occur in the meridional profile, then a singularity 
appears in the integral in ( 5 )  and (6)) which consequently must be broken up 
into parts, each with the appropriate choice of signs. There might be more 
than one inflexion point yet no more than one was found with any of the pairs of 
contact angles for which computations were made (all for zero separation 
between sphere and plane). Multiple inflexions in the meridional profiles of other 
solutions of ( 2 )  are known (Plateau 1864) but such menisci are likely to be 
unstable. 

When 0 < 8,+8, < n- and 8, =+ in- and 8, + 0, an inflexion point appears as 
the filling angle + increases. From (10) we can predict the mean curvatures a t  
which an inflexion point occurs a t  either the plate or the sphere. At the sphere, 
el = 8, + II. and (10) becomes 

HZ = sin (8, + +)I2 sin I+?. 

H,* = {sin (8, + $) T [sin2 (8, + @) - sin2 (T- 8,)]*}/2 sin pk. 

(12) 

(13) 

At the plate, e2 = n-8, and (10) becomes 
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Because the mean curvature H is of course a function of the filling angle @, 
computations with (12) and (13) must rely on some iterative process to arrive at  
precise values of H and @, We note that (13) has one root such that H,* < H: 
and another such that H,* > H,*. Numerical computations for specific values of 
O1 and 8, have shown that, when 8, < in-, the minus sign applies and the second 
apparent root of (13) is not admissible since sin2 (8, + $) < sin2 (n- - 8,). Similarly, 
when 8, > in, the plus sign is appropriate and the other root is not admissible. 
Computations have also shown that the slope of H($)  is positive in the range of 
$ where inflexion points occur, so that with increasing @ the inflexion point 
appears a t  the sphere if H,* < H,* and at  the plate if H,* > H,*. In  either event, 
as $ increases further the point then migrates along the profile until it  reaches the 
other end. 

When both 8, and 8, are small, there is an inflexion point in every profile 
over a large range of filling angles @ (cf. figure 3). As 8, increases, the range 
narrows and a t  O2 = in- it  collapses to a single profile for which 8,+$ = 4 ~ :  
the meniscus is a right cylinder. When 8,+8, 2 n-, the mean curvature falls 
outside the range given by (1 1) regardless of $. At 8, = 0,  the range again col- 
lapses to a single point, but the solution is degenerate in  the sense that the radius 
of the meniscus at  the plate becomes infinite. Otherwise there is always a range 
of filling angles @ between the values for the zero-curvature and zero-force 
configurations (see 3 3) in which the meniscus profile contains an inflexion point, 
a fact not heretofore noted. 

On the presumption that no more than one inflexion point occurs in the 
meridional profile, (5) and (6) can be rewritten in terms of elliptic inOegrals 
F and E of the first and second kinds. The exact form of (5) and (6) and of related 
equations for the meniscus surface area and volume enclosed by meniscus of 
course depends on the sign of the meridional curvature and whether or not there 
is an inflexion point at  which it changes sign, causing singularities to appear 
in the integrals. All of the formulae for the mean curvature, meridional profile, 
surface area and enclosed volume have been worked out and are summarized 
in tables 1-3. The various forms are merely different versions of the same solution 
and each can be obtained from others by appropriately transforming elliptic 
integrals or taking limits. The results tabulated here reduce to those obtained 
by Woodrow et al. (1961) and Melrose (1966) for the case 8, = &T, in which the 
plane can be regarded as the plane of symmetry between identical spheres. 

3. Discussion 
Plateau’s sequence 

As the filling angle is increased, the profiles generated with the formulae in 
tables 1 and 2 follow the sequence of surfaces of constant mean curvature classi- 
fied by Plateau (1864), although for certain ranges of contact angles 8, and 
8,, the succession begins or ends in the middle of the full sequence. Examples 
are shown in figure 2. At first the meniscus is a portion of nodoid having SUE- 
ciently negative meridional curvature that the mean curvature is negative 
and the pressure inside the meniscus is lower than that of the surroundings. 
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(u) Nodoid segment 

(d )  Unduloid segmer.: 

(g) Unduloid segment 

(h)  Catenoid segment 

(c) Cylinder segment 

(h) Zone of sphere 

(c) Unduloid segnicnt 

( f ) Unduloid segment 

(i) Nodoid segment 

FIGURE 2.  Classification by profiles of axisymmetric menisci of uniform mean curvature. 
Meridional curvatures: (a)-(c) negative; (d )  negative at sphere and positive at plane; 
(e) everywhere zero; df )  positive at  sphere and negative at plane; (g)-(i) everywhere posi- 
tive. Except in ( a )  and (i), tick marks indicate inflexion points. 

With increasing filling angle @ the surface eventually becomes a catenoid 
having zero mean curvature; the pressure inside the meniscus equals that outside. 
With further increase in 9, the meniscus becomes a portion of unduloid having 
negative meridional curvature but positive mean curvature. At all larger 
filling angles the mean curvature remains positive and the pressure inside the 
meniscus is higher than outside. As we have established, an inflexion point 
appears sooner or later (if 0, + 0) either at the plate or at the sphere, and migrates 
withincreasing@ along the profile, which is still the profileof aportion of unduloid. 
When the inflexion point leaves the profile, the meniscus becomes a portion of 
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r 

FIGURE 3. Meniscus profiles when 8, = 40' and 8, = 40°, i.e. imperfect wetting. 
+ , inflexion points; N ,  nodoid; U ,  unduloid. 

0' 3 0  60' 90" 120" 

Filling angle, II. 
FIGURE 4. Mean curvature of meniscus ws. filling angle of pendular ring 

(sphere on plate) for assorted contact-angle pairs. 



Pendular rings between solids 736 

unduloid having positive meridional curvature. Eventually the meniscus be- 
comes a portion of sphere and finally a portion of nodoid again but with positive 
meridional and mean curvatures. 

Figure 3 shows profiles computed using the formulae in table 2 for a sphere in 
contact with the plate and contact angles of 40" on both. Inflexion points are 
marked by a + on curves where they occur and can be seen to proceed from 
the plate to the sphere as @ increases. The mean curvature, net force, volume, 
surface area and meniscus radius a t  the plate for the same case as well as the 
experimentally important case of zero contact angles on both the sphere and plate 
are shown in table 4. 

Meniscus curvature 

Results of computations using the formulae listed in table 1 for zero separation 
between sphere and plate and a variety of contact-angle pairs are shown in 
figure 4. Where e2 + 0 the mean curvature has a relative maximum with respect 
t o  the filling angle @ and in some circumstances it also has a relative minimum. 
At both the maximum and the minimum the mean curvature is positive. When 
there is a minimum it occurs a t  a larger filling angle than the maximum. Thus 
there are values of H which could exist a t  as many as three different filling 
angles. Because the curvature of the meniscus affects the vapour pressure of 
liquid inside the meniscus, as described by the Kelvin equation (Defay & Prigo- 
gine 1966), the value of H determines whether liquid inside the meniscus is in 
diffusional equilibrium with vapour a t  a particular pressure. As the Kelvin 
equation teaches (see appendix), when H < 0 equilibrium is possible between 
a pendular ring or bridge of liquid and vapour a t  a certain pressure less than the 
ordinary vapour pressure (pressure of vapour in equilibrium with liquid a t  the 
same temperature behind a flat meniscus). Moreover, it is easy to see that the 
equilibrium is stable with respect to small perturbations of liquid volume by 
vaporization or condensation (see appendix). Thus when the mean curvature is 
negative there is a single equilibrium state ($, H )  and it is stable with respect 
to isothermal diffusional equilibrium. On the other hand, when the mean curva- 
ture is positive, H > 0, equilibrium is possible only with vapour a t  a certain 
pressure above the ordinary vapour pressure. While there may be as many as 
three equilibrium filling angles, it is not hard to see that no more than one can be 
stable to small perturbations of liquid volume by vaporization or condensation 
(see appendix). 

The catenoid, a surface of zero mean curvature, has special significance 
because it is the shape which can exist in diffusional equilibrium with vapour 
which is also in equilibrium with bulk liquid a t  the same temperature. According 
to the appropriate form of (5)-catenoid entry in table 1-and the boundary 
condition a t  the sphere, the catenoid occurs when @ satisfies 

Figure 5 is a plot of the filling angles $c a t  which the mean curvature of menisci 
between a sphere and plate in contact vanishes when the contact angles are 
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0" 

Contact angle with sphere, el 
FIGURE 5. Filling angles for vanishing mean curvature of pendular ring (sphere on plate). 
Above the diagonal the mean curvature is always positive (pressure greater inside than 
outside the ring); below the diagonal the mean curvature is negative if @ < @o, i.e. if 
the filling angle is less than the angle given by the curve through the point (el, &). 

8, and 8,. Plainly, if 8, = 0, equation (14) is satisfied only by S,+$ = 7r and 
this corresponds to a meniscus of unbounded radius at the plate. Except for 
this unlikely case the mean curvature is necessarily negative when liquid wets 
the plate perfectly, i.e. when 8, = 0. When the sphere is perfectly wet, 8, = 0, 
and the configuration of zero mean curvature occurs at some $c < 180". In 
general, as wetting deteriorates, i.e. as 8, and 8, increase, the catenoid occurs at 
lower $c. 

Capillary force 
The total force exerted through ring or bridge on the sphere and the plate 
consists of three parts: a surface-tension force which resides in the meniscus, 
a capillary pressure force which is transmitted by the liquid but originates in 
the curvature of the meniscus, and a buoyancy force associated with the wetted 
segments of the sphere and plate. When the effect of gravity is negligible, the 
buoyancy force too can be disregarded. The axial component of the surface- 
tension force (attractive if positive) acting on the sphere is 

The capillary pressure force is 

Hence, the total force on the sphere is 

= 27rRa sin $ sin (0, + $). 

Fp = - 2nHaR2 sin2 9. 

(15) 

(16) 

I$= c + F p  = 27raR[sin$sin(8,+$)-HRsin2$]. (17) 
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0 30" 60" 90" 120" 150" 180" 

Contact angle with sphere, 6, 

FIGURE 6. Filling angles for vanishing total force exerted by pendular ring (sphere on 
plate). Above the diagonal the force is always repulsive; below the diagonal the force is 
attractive if @ < @o, i.e. if the filling angle is less than the angle given by the curve through 
the point (O1, 19~) .  

The force between a sphere and a plate has been measured by McFarlane 
& Tabor (1950) and that between a sphere and plane and between equal 
spheres by Cross & Picknett (1963u),Mason &Clark(1965a)andErleetal. (1971). 
Cross & Picknett's data agree well with (13) when both surfaces are perfectly 
wetted by the liquid, i.e. when 8, = 0 and 8, = 0 (sphere on plate) and when 
0, = 0 and 8, = 90" (equal spheres). Their data for 8, = 0, = 40" do not agree 
as well, which they attribute to difficulties in obtaining reproducible contact 
angles. Mason & Clark's data are not in good agreement with (17) but their 
measurements have been challenged by Erle et al. (1971), who confirm Cross 
& Picknett's results. McFarlane & Tabor (1950) reported measurements with 
spheres of different radii but did not record filling angles, which were probably 
quite small in most of their experiments. 

In  another paper Mason & Clark (19653) showed that, when the total force 
between any two spheres is zero, the meniscus profile must be an arc of circle 
and the meniscus itself must be a zone of sphere. This is also true when the total 
force on a sphere in contact with a plane is zero. Because the principal radii of 
curvature of a spherical zone are equal, (17) dictates that when the separation 
is zero the filling angle $o at which the total force vanishes is given by 

tan (&,ho) = (cos 8, + cos B,)/sin 8,. (18) 
Figure 6 is a working plot of this equation. It makes clear that if 8, = 0 the zero- 
force configuration occurs only when $o = 180". Apart from this limiting case 
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the total force is always attractive if the sphere is perfectly wetted by the liquid. 
However, if wetting is imperfect, i.e. 8, and 8, both different from zero, capillary 
attraction may give way to capillary repulsion. 

The spherical configuration is important because it delimits the range of filling 
angles in which the total force on the sphere is attractive. If @ > $o, the total 
force is repulsive, a possibility that has been overlooked but which is certainly 
relevant to wetting and dispersion of pigments, adhesion of particles in moist 
atmospheres, and rheological behaviour of damp powders. The existence of 
capillary repulsion has recently been demonstrated by a simple experiment 
(Rivas et al, 1975). According to figure 6, if cos 8, + cos 8, > 0, is less than 180" 
and a t  larger filling angles the total force is repulsive. The zero-force filling angle 
@@ can be quite small. For instance, if 8, = &r, then $@ = 7 ~ -  28,; thus @o = loo 
when 8, = 85" and 8, = 90". 

The azimuthal radius of meniscus curvature a t  the contact circle 011 the sphere 
is obviously 

and therefore the mean curvature of the zero-force configuration is 

r ,  = R sin $/sin ( 8, + $) (19) 

H R  = sin (8, + @o)/sin @o.  

With @ = @, this matches the upper end of the range of mean curvatures of 
unduloids, as given by equation (11). The sphere is the transitional surface 
between unduloids and nodoids all of positive meridional curvature, just as the 
catenoid provides the transition between nodoids and unduloids all of negative 
meridional curvature. 

Figures 5 and 6 are particularly useful because they define the ranges of filling 
angles in which most of the different formulae in table 1 apply. 

Circle approximation 

I n  the literature the meridional profile is often modelled by an arc of circle, 
which of course has uniform meridional curvature. Given 8,, 8, and @ the 
meridional radius is easily shown to be 

R( I - cos 9) 
r -  - - cos (8, + $) + cos 8,' 

If this is used the second principal radius must also be taken as constant, A 
representative value which is convenient is the slant distance from the contact 
circle on the sphere to the axis of symmetry as given by equation (19)t. Together 
(1 9) and (20) provide an estimate R of mean curvature : 

cos (8, + @) + cos 8, sin (8, + $) 
+ sin$ . 2RR = - 

I-cos@ 

The circle approximation can also be used to estimate the total capillary force 
on the sphere or plane, and this has often been done for the limit of vanishing 
filling angle. Some trigonometric manipulation leads to 

& = 2naR[sin @sin 8, - ( 1  + cos @) (cos 8, + cos 02)]. ( 2 2 )  
t The azimuthal radius of curvature at any point of the circular arc could be used and 

would leave the estimates of meniscus area and enclosed volume unchanged, although it 
would give an estimate of mean curvature different from (21). 
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According to this equation the total force is independent of the amount of liquid 
in the ring as that amount approaches zero, inasmuch as 

lim pt = 2 m R  ( cos 8, + cos 8,). 
$+O 

( 2 3 )  

This is identical to the limit of the exact equation (17) and both predict that the 
limiting force is repulsive whenever wetting is sufficiently imperfect that 

e,+e, > 1800. 

This accords with (18) and figure 6 .  When 8, = 8,) equation ( 2 3 )  reduces to formu- 
lae obtained by McFarlane & Tabor (1950) and Cross & Picknett ( 1 9 6 3 ~ ) ;  
when 8, = go",  to a formula reported by Cross & Picknett ( 1 9 6 3 ~ ) .  

The circle approximation is so much more tractable than the exact treatment 
of pendular rings that it is important to know when it is an accurate approxima- 
tion. Now it is, in fact, the exact solution when the meniscus is actually spherical 
and therefore the mean curvatures, forces, volumes and surface areas from 
the approximation are exactly right when $ = $,. Unfortunately the accuracy 
of the approximation may deteriorate rapidly as $ departs from $,, particularly 
when 8, and 8, are both small. For instance, when 8, = 8, = 40') $o = 134.48" 
and the errors 100(8  -H)/IHI are 26.2 % and -47 .5  % when $ = 130" and 
$ = 140°, respectively. 

The circle approximation is also the exact solution in the special limit of 
a cylindrical meniscus, i.e. when 8, + $ = 8, = 90". 

It happens that the first term of ( 2 1 )  is the same as the first term of each 
formula in table 1. Consequently the circle approximation might be expected 
to be accurate when Y dominates the terms containing elliptic integrals in 
the table. This is true, a t  least when 8, and $ are both small. Computations 
show that, for 8, < 60" and $ < 10") I? differs from H by less than 6.5 %. The 
estimate pt is slightly closer to 4 because the surface-tension part 4 can be 
computed exactly. The estimates of meniscus area and enclosed volume are 
accurate to within 5.5 yo when 8, < 60" and $ < 40". 

Effect of gravity 

I n  order to assess the importance of gravity and to confirm the solutions ob- 
tained in 3 2 we have also solved numerically the full Laplace-Young equation 
for axisymmetric menisci, which in dimensionless form is [cf. (1) and ( a ) ]  

where the Bond number is now B =_ gR2Ap/cT and H ,  is the curvature a t  y = 0. 
Since y is of order one, the first term on the left side of ( 2 0 )  can be neglected when 
B / l 2 H R J  < 1. Sample calculations were made with B = 0.014 and several pairs 
of contact angles. I n  every case, the numerical and analytic solutions in no 
respect differ by more than 0.4% (usually they are much closer) except when 
2 H R  turns out to be sufficiently small that BII2HRI > lo-,. For instance, with 
sphere and plate in contact and 8, = 8, = 40", the difference between Z? and H 
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is only 0.19 yo when B/ (  2HRI = 0.0132; but when B/(  2HRl = 0.210, the differ- 
ence is 7.6 Yo. It appears that the ratio of Bond number to dimensionless mean 
curvature provides a conservative criterion. If the Bond number is less than a 
specified small percentage of the product of mean curvature and sphere radius, 
the properties of the meniscus calculated by neglecting gravity evidently are in 
error by less than that percentage. Indeed, gravity may often be a less important 
perturbing influence than departures of contact lines from circularity and non- 
uniformities of contact angle along the contact lines, phenomena associated 
with rough and dirty solid surfaces and contaminated liquids. 

This work was supported in part by the National Science Foundation. A. P. R. 
is grateful to the Latin American Scholarship Program of American Universities 
for its support. 

Appendix. Stability of diffusional equilibrium states 
The chemical potential of liquid in a pendular ring depends on the pressure 

within the ring and hence on the curvature of the ring surface, a fact which is 
expressed by an approximate relation named after Kelvin (e.g. Defay & Prigo- 
gine 1966), 

In (Po/Peq) = vk(p - PeQ)/RT, (25) 

where R is the gas constant, T the absolute temperature, Pea the pressure of 
vapour in equilibrium with liquid which itself experiences a pressure p ,  and PO 
the ordinary vapour pressure, i.e. the pressure of vapour in equilibrium with 
bulk liquid beneath a flat meniscus. v; is the molar volume of the liquid, the 
dependence of which on pressure is disregarded in deriving (25). For a system 
in mechanical equilibrium and vapour-liquid equilibrium, 

p - PeQ = 2Hg. (26 )  

Thus the Kelvin equation predicts that the vapour pressure of liquid behind a 
surface having negative mean curvature is lower than that of liquid at the 
same temperature beneath a surface of zero mean curvature. Hence vapour at  the 
ordinary vapour pressure will condense into a pendular ring at the same tempera- 
ture. 

If the pressure in the vapour is less than the ordinary vapour pressure the 
equilibrium configuration of liquid is a ring having negative mean curvature 
given by equation (26 ) .  This configuration is stable since a small increase in 
the volume of liquid produces a driving force for volume decrease by evapora- 
tion, while a small decrease produces a driving force for volume increase by 
condensation. 

If the pressure in the vapour exceeds the ordinary vapour pressure and no 
flat interfaces are in the vicinity, surfaces of positive mean curvature may 
exist in diffusional equilibrium. Depending on the pressure in the vapour there 
are as many as three different surfaces which have the same mean curvature. 
Figure 7 shows the possible equilibrium states. State 1 is stable: a small increase 
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0 

2- 3 

FIGURE 7 .  Mean curvature at equilibrium between ring liquid and vapour at a 
pressure exceeding the ordinary vapour pressure at  the same temperature. 

in the amount of liquid in the ring increases the filling angle and hence the 
curvature and so causes evaporation, while the converse is true of a small de- 
crease in volume. State 2 is unstable because a small increase in its volume 
increases $, diminishes the mean curvature and promotes further condensation; 
similarly, a small decrease in volume decreases $, raises the mean curvature and 
enhances evaporation. State 3 is slightly different since increasing the volume 
decreases the filling angle, but this again diminishes the mean curvature and 
promotes condensation, while reducing the volume slightly leads to a tendency 
for further evaporation; hence this state is also unstable. It may also be suscep- 
tible to instability that depends on gravity, inasmuch as $ would have to be 
comparatively large before state 3 became even a possibility. 
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